Skip to content

AI Agent

The AI Agent node executes LLM calls with optional tool use. Without tools, it makes a single LLM call. With tools enabled, it becomes an autonomous agent that can reason, use tools, and iterate.

Select a provider and model:

ProviderPopular Models
Anthropicclaude-sonnet-4-5, claude-opus-4-5, claude-haiku-4-5
OpenAIgpt-4o, gpt-4-turbo, o1, o3
xAIgrok-3, grok-4
Google AI Studiogemini-2.5-pro, gemini-2.5-flash
Vertex AIgemini-2.5-pro, gemini-2.5-flash
Groqllama-3.3-70b-versatile, mixtral-8x7b
Workers AI@cf/meta/llama-3.2-3b-instruct

Default: Anthropic / claude-sonnet-4-5

System Prompt (optional) Sets the AI’s role and behavior. Example:

You are a data analyst. Be concise and factual.

User Prompt (required) The task for the AI. Use template variables to reference data from upstream nodes:

Analyze these errors and prioritize by severity:
{{sentry.issues}}

Assistant Messages (optional) Add example responses to guide output format. Useful for few-shot prompting.

Controls how the AI structures its response:

FormatUse CaseConfiguration
TextSummaries, explanations, chatDefault, no config needed
One resultStructured data extractionDefine JSON schema
Many resultsLists, batch processingDefine element schema
ClassifyCategorization, routingDefine options list

Free-form text response. Best for summaries, explanations, and conversational output.

Returns a single structured object. Define the schema:

{
"type": "object",
"properties": {
"summary": { "type": "string" },
"severity": { "type": "string", "enum": ["critical", "high", "medium", "low"] },
"affectedUsers": { "type": "number" }
},
"required": ["summary", "severity"]
}

Returns a list of structured objects. Define what each element looks like:

{
"type": "object",
"properties": {
"title": { "type": "string" },
"priority": { "type": "number" }
}
}

Model selects from predefined options. Good for routing and categorization:

critical
high
medium
low

Adding tools transforms a single LLM call into an autonomous agent that can reason and take actions.

ToolDescription
Web FetchFetch a URL and read its content as text
Web SearchSearch the web and get result links
SandboxExecute bash commands, read/write files

Connect Model Context Protocol servers to give the AI access to external tools:

  • Sentry (list issues, search events)
  • GitHub (create issues, read files)
  • Slack (send messages)
  • Custom MCP servers from your workspace

When tools are enabled, the agent will:

  1. Analyze the task
  2. Decide which tools to use
  3. Call tools and observe results
  4. Iterate until the task is complete

Temperature (0-2) Controls randomness. Lower = more deterministic, higher = more creative.

  • 0: Deterministic (same input = same output)
  • 1: Balanced (default)
  • 2: Maximum creativity

Max Steps (1-50) Maximum iterations when tools are enabled. The agent stops when:

  • Task is complete
  • Max steps reached
  • Error occurs

Default: 20 steps

Single LLM call:

Input → Prompt → Model → Output

Autonomous agent loop:

Input → Prompt → Model → [Tool Call → Result]* → Output

The agent continues calling tools until it determines the task is complete or hits max steps.

Model: claude-sonnet-4-5
Prompt: "Summarize this article in 3 bullet points: {{http.response}}"
Output: Text
Tools: None
Model: claude-sonnet-4-5
Prompt: "Extract contact info from: {{webhook.body}}"
Output: One result
Schema:
name: string
email: string
phone: string (optional)
Tools: None
Model: claude-opus-4-5
System: "You are a research assistant."
Prompt: "Find the latest pricing for {{input.competitor}} and summarize."
Output: One result
Tools: Web Search, Web Fetch
Max Steps: 10
Model: claude-haiku-4-5
Prompt: "Classify this support ticket: {{zendesk.ticket}}"
Output: Classify
Options:
- billing
- technical
- feature-request
- other
  1. Use text output for simple tasks - Don’t over-structure when plain text works
  2. Use structured output for downstream processing - When other nodes need to parse the result
  3. Enable sandbox only when needed - It grants filesystem access
  4. Set reasonable max steps - 5-15 for most tasks, up to 50 for complex research
  5. Use system prompts for consistent behavior - Define role and constraints upfront